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Abstract—In recent years unplanned parallel data processing 
has emerged to be one of the killer applications for 
Infrastructure-as-a-Service (IaaS) clouds. Major Cloud 
computing companies have started to integrate frameworks 
for parallel data processing in their product collections, 
making it easy for customers to access these services and to 
deploy their programs. the processing frameworks which are 
currently used have been designed for static, homogeneous 
cluster setups and disregard the particular nature of a cloud. 
Consequently, the allocated compute resources may be not 
sufficient for big parts of the submitted job and unnecessarily 
increase processing time and cost. In this paper we discuss the 
opportunities and challenges for efficient parallel data 
processing 
in clouds and present our research project Nephele. Nephele is 
the first data processing framework to explicitly exploit the 
dynamic resource allocation offered by today’s IaaS clouds for 
both, task scheduling and execution. Particular tasks of a 
processing job can be assigned to different types of virtual 
machines which are automatically instantiated and terminated 
during the job execution.  
 
Keywords- Many-Task Computing, queryprocessing, Cloud 
Computing 
 

I. INTRODUCTION 
 Cloud computing is the technology used to access remotely 
stored data through the internet. It protects the data from the 
disasters like earthquakes, tsunami, cyclones, fire etc. 
Cloud computing protects the data by using emails, 
personal records, documents, etc. By storing the useful data 
into the cloud, the owners are free from the burden of 
maintenance. In this, owners can share their data with the 
large number of users when the users request for the data. 
The users might wants to retrieve only specific data files in 
which they are interested. Today a growing number of 
companies have to process huge amounts of data in a cost-
efficient manner. Classic representatives for these 
companies are operators of Internet search engines, like 
Google, Yahoo, or Microsoft. The vast amount of data they 
have to deal with every day has made traditional database 
solutions are expensive .Instead, these companies have 
popularized an architectural paradigm based on a large 
number of commodity servers. Problems like processing 
regenerating a web index are split into several independent 
subtasks, distributed among the available nodes, and 
computed in parallel. In order to simplify the development 
of distributed applications on top of such architectures, 
many of these companies have also built customized data 
processing frameworks. Examples are Google’s 
MapReduce They can be classified by terms like high 
throughput computing (HTC) or many-task computing 

(MTC), depending on the amount of data and the number of 
tasks involved differ in design, their programming models 
share similar objectives, namely parallel programming, 
fault tolerance, and execution optimizations from the 
developer. Developers can typically continue to write 
sequential programs. The processing framework then takes 
care of distributing the program among the available nodes 
and executes each instance of the program on the 
appropriate fragment of data. For companies that only have 
to process large amount of data occasionally running their 
own data center is obviously not an option. Instead, Cloud 
computing has emerged as a promising approach to 
rent a large IT infrastructure on a short-term pay-per-usage 
basis. Opera-tors of so-called Infrastructure-as-a-Service 
(IaaS) clouds, access, and control a set of virtual machines 
(VMs) which run inside their data centres and only charge 
them for the period of time the machines are allocated .As a 
result, rented resources may be inadequate for big parts of 
the processing job, which may lower the overall processing 
performance and increase the cost. In this paper we want to 
discuss the particular challenges and opportunities for 
efficient parallel data pro- cessing in clouds and present 
Nephele, a new processing framework explicitly designed 
for cloud environments. Most notably, Nephele is the first 
data processing frame-work to include the possibility of 
dynamically allocating/deal locating different compute 
resources from a cloud in its scheduling and during job 
execution. 
 

2. CHALLENGES AND OPPORTUNITIES 
Current data processing frameworks like Google’s 
MapReduce or Microsoft’s Dryad engine have been de-
signed for cluster environments. This is reflected in a 
number of assumptions they make which are not necessarily 
valid in cloud environments. In this section we discuss how 
abandoning these assumptions raises new opportunities but 
also challenges for efficient parallel data processing in 
clouds. 
Opportunities 
Today’s processing frameworks typically assume the 
resources they manage consist of a static set of 
homogeneous compute nodes. New VMs can be allocated 
at any time through a well defined interface and become 
available in a matter of seconds. Machines which are no 
longer used can be terminated instantly and the cloud 
customer will be charged for them no more. 
Challenges 
The cloud’s virtualized nature helps to enable promising 
new use cases for efficient parallel data processing. How 
ever, it also imposes new challenges compared to classic 
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cluster setups. The major challenge we see is the cloud’s 
opaqueness with prospect to exploiting data locality: In a 
cluster the compute nodes are typically interconnected 
through a physical high-performance network. 
 

3. DESIGN 
Based on the challenges and opportunities outlined in the 
previous section we have designed Nephele, a New data 
processing framework for cloud environments. Nephele 
takes up many ideas of previous processing frameworks but 
refines them to better match the dynamic and opaque nature 
of a cloud. 
3.1. ARCHITECTURE 
Nephele’s architecture follows a classic master-worker 
pattern as illustrated in Fig.  
 

 
Figure 1 : Queryprocessing 

 
The Job Manager receives the client’s jobs, is responsible 
for scheduling them, and coordinates their execution. It is 
capable of communicating with the interface the cloud 
operator provides to control the instantiation of VMs. Cloud 
Controller. By means of the Cloud Controller the Job 
Manager can allocate or deal locate VMs according to the 
current job execution phase. The actual execution of tasks 
which a Nephele job consists of is carried out by a set of 
instances. Each instance runs a so-called Task 
Manager(TM). A Task Manager receives one or more tasks 
from the Job Manager at a time, executes them, and after 
that informs the Job Manager about their completion or 
possible errors. 
Unless a job is submitted to the Job Manager. We expect 
the set of instances to be empty. When the respective 
instances must be allocated/deal located to ensure a 
continuous but cost-efficient processing. The newly 
allocated instances boot up with a previ- ously compiled 
VM image. The image is configured to automatically start a 
Task Manager and register it with the Job Manager. Once 
all the necessary Task Managers have successfully 
contacted the Job Manager, it triggers the execution of the 
scheduled job. Initially, the VM images used to boot up the 
Task Managers are blank and do not contain any of the data 
the Nephele job is supposed to operate on if they are 
connected by a private or virtual network. 
Job description 
Similar to Microsoft’s Dryad  jobs in Nephele are 
Expressed as a directed acyclic graph (DAG). Each vertex 
in the graph represents a task of the overall processing job, 
the graph’s edges define the communication flow between 

these tasks. We also decided to use DAGs to describe 
processing jobs for two major reasons: The first reason is 
that DAGs allow tasks to have multiple input and multiple 
output edges. This tremendously simplifies the 
implementation of classic data 
 

 
 
I.RELATED WORK 
A growing number of companies have to process huge 
amounts of data in a cost-efficient manner. Classic 
representatives for these companies are operators of Internet 
search engines. The vast amount of data they have to deal 
with every day has made traditional database solutions 
prohibitively 
Expensive .Instead, these companies have popularized an 
architectural paradigm based on a large number of 
commodity servers. Problems like processing crawled 
documents or regenerating a web index are split into several 
independent subtasks, distributed among the available 
nodes, and computed in parallel. 
II. PROPOSED SYSTEM 
 In recent years a variety of systems to facilitate MTC has 
been developed. Although these systems typically share 
common goals (e.g. to hide issues of parallelism or fault 
tolerance), they aim at different fields of application. 
MapReduce   is designed to run data analysis jobs on a 
large amount of data, which is expected to be stored across 
a large set of share-nothing commodity servers.  
Once a user has fit his program into the required map and 
reduce pattern, the execution framework takes care of 
splitting the job into subtasks, distributing and executing 
them. A single Map Reduce job always consists of a 
distinct map and reduce program. 
NETWORK MODULE: 
Server - Client computing or networking is a distributed 
application architecture that partitions tasks or workloads 
between service providers (servers) and service requesters, 
called clients.  A client also shares any of its resources. 
Initiate communication sessions with servers which await 
incoming requests.  
LBS SERVICES 
Linking a position to an individual is possible by various 
means, such as publicly available information city maps. 
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Even though a user may create a fake ID to access the 
service, her location alone may disclose her actual identity. 
When a user u wishes to pose a query, she sends her 
location to a trusted server. 
SYSTEM MODEL 
Each vertex of the job system model graph is transformed 
in to one execution vertex If constructing an execution 
graph from a user submitted job graph may leave different 
degrees of freedom to nephele 
SCHEDULED TASK: 
Recently, considerable research interest has focused on 
preventing identity inference in location-based services. 
This offers privacy protection in the sense that the actual 
user position u cannot be distinguished from others in the 
ASR (anonym zing spatial region) even when malicious LS 
is advanced enough to possess all user locations. This 
spatial K-anonymity model is most widely used in location 
privacy research/applications, even though alternative 
models are emerging.  
QUERY PROCESSING: 
Processing is based on implementation of the theorem uses 
(network-based) search operations as off the shelf building 
blocks. Thus, the NAP query evaluation methodology is 
readily deployable on existing systems, and can be easily 
adapted to different network storage schemes. NAP 
achieves low computational and communication costs, and 
quick responses overall. It is readily deployable, requiring 
only basic network operations.   
Job Scheduling and Execution 
After having received a valid Job Graph from the user, 
Nephele’s Job Manager transforms it into a so-called 
Execution Graph. An Execution Graph is Nephele’s 
primary data structure for scheduling and monitoring the 
execution of a Nephele job. Unlike the abstract Job Graph, 
the Execution Graph contains all the concrete information 
required to schedule and execute the received job on the 
cloud. It explicitly models task parallelization and the 
mapping of tasks to instances. Depending on the level of 
annotations the user has provided with his Job Graph, 
Nephele may have different degrees of freedom in 
constructing the Execution Graph. 

 
 

While the abstract graph describes the job execution on a In 
contrast to the Job Graph, an Execution Graph is no longer 
a pure DAG. Instead, its structure resembles a graph with 
two different levels of details, an abstract and a concrete 
level task level (without parallelization) and the scheduling 
of instance allocation/deal location, the concrete, more fine-
grained graph defines the mapping of subtasks to instances 
and the communication channels between them. 
Parallelization and Scheduling Strategies: 
If constructing an Execution Graph from a user’s submitted 
Job Graph may leave different degrees of freedom to 
Nephele. The user provides any job annotation which 
contains more specific instructions we currently pursue 
simple default strategy: Each vertex of the Job Graph is 
transformed into one Execution Vertex. The default channel 
types are network channels. Each Execution Vertex is by 
default assigned to its own Execution Instance unless the 
user’s annotations or other scheduling restrictions (e.g. the 
usage of in-memory channels) prohibit it. 
           

IV RESULTS 
The concept of this paper is implemented and different 
results are shown below. The proposed paper is 
implemented in .net technology on a System  Pentium IV 
2.4 GHz. Hard Disk40 GB. Floppy Drive1.44 Mb 
Monitor 15 VGA Colour. Mouse Logitech. Ram   512 MB. 
The propose paper’s concepts shows MapReduce has been 
clearly designed for large static clusters. Although it can 
deal with sporadic node failures, the available compute 
resources are essentially considered to be a fixed set of 
homogeneous machines. 
 
 

V.CONCLUSION 
In this paper we have discussed the challenges and 
opportunities for efficient parallel data processing in cloud 
environments and presented Nephele, the first data 
processing framework to exploit the dynamic resource 
provisioning offered by today’s IaaS clouds. We have 
described Nephele’s basic architecture and presented a 
performance comparison to the well-established data 
processing framework Hadoop. The performance evaluation 
gives a first impression on how the ability to assign specific 
virtual machine types to specific tasks of a processing job, 
as well as the possibility to automatically allocate/deal 
locate virtual machines in the course of a job execution, can 
help to improve the overall resource utilization and, 
consequently, reduce the processing cost. With a 
framework like Nephele at hand, there are a variety of open 
research issues, which we plan to address for future work. 
In particular, we are interested in improving Nephele’s 
ability to adapt to resource overload or underutilization 
during the job execution automatically. Our current 
profiling approach builds a valuable basis for this, however, 
at the moment the system still requires a reasonable amount 
of user annotations. In general, we think our work 
represents an important contribution to the growing field of 
Cloud computing services and points out exciting new 
opportunities in the field of parallel data processing.              
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