
Exploiting Dynamic Resource Allocation for
Query Processing in the Cloud Computing

M.S.B.Pridviraju , K.Rekha Devi

Department of CSE , Kakatiya Institute of Technology & Science,

Warangal Dist-506002,India.

Abstract—In recent years unplanned parallel data processing
has emerged to be one of the killer applications for
Infrastructure-as-a-Service (IaaS) clouds. Major Cloud
computing companies have started to integrate frameworks
for parallel data processing in their product collections,
making it easy for customers to access these services and to
deploy their programs. the processing frameworks which are
currently used have been designed for static, homogeneous
cluster setups and disregard the particular nature of a cloud.
Consequently, the allocated compute resources may be not
sufficient for big parts of the submitted job and unnecessarily
increase processing time and cost. In this paper we discuss the
opportunities and challenges for efficient parallel data
processing
in clouds and present our research project Nephele. Nephele is
the first data processing framework to explicitly exploit the
dynamic resource allocation offered by today’s IaaS clouds for
both, task scheduling and execution. Particular tasks of a
processing job can be assigned to different types of virtual
machines which are automatically instantiated and terminated
during the job execution.

Keywords- Many-Task Computing, queryprocessing, Cloud
Computing

I. INTRODUCTION
 Cloud computing is the technology used to access remotely
stored data through the internet. It protects the data from the
disasters like earthquakes, tsunami, cyclones, fire etc.
Cloud computing protects the data by using emails,
personal records, documents, etc. By storing the useful data
into the cloud, the owners are free from the burden of
maintenance. In this, owners can share their data with the
large number of users when the users request for the data.
The users might wants to retrieve only specific data files in
which they are interested. Today a growing number of
companies have to process huge amounts of data in a cost-
efficient manner. Classic representatives for these
companies are operators of Internet search engines, like
Google, Yahoo, or Microsoft. The vast amount of data they
have to deal with every day has made traditional database
solutions are expensive .Instead, these companies have
popularized an architectural paradigm based on a large
number of commodity servers. Problems like processing
regenerating a web index are split into several independent
subtasks, distributed among the available nodes, and
computed in parallel. In order to simplify the development
of distributed applications on top of such architectures,
many of these companies have also built customized data
processing frameworks. Examples are Google’s
MapReduce They can be classified by terms like high
throughput computing (HTC) or many-task computing

(MTC), depending on the amount of data and the number of
tasks involved differ in design, their programming models
share similar objectives, namely parallel programming,
fault tolerance, and execution optimizations from the
developer. Developers can typically continue to write
sequential programs. The processing framework then takes
care of distributing the program among the available nodes
and executes each instance of the program on the
appropriate fragment of data. For companies that only have
to process large amount of data occasionally running their
own data center is obviously not an option. Instead, Cloud
computing has emerged as a promising approach to
rent a large IT infrastructure on a short-term pay-per-usage
basis. Opera-tors of so-called Infrastructure-as-a-Service
(IaaS) clouds, access, and control a set of virtual machines
(VMs) which run inside their data centres and only charge
them for the period of time the machines are allocated .As a
result, rented resources may be inadequate for big parts of
the processing job, which may lower the overall processing
performance and increase the cost. In this paper we want to
discuss the particular challenges and opportunities for
efficient parallel data pro- cessing in clouds and present
Nephele, a new processing framework explicitly designed
for cloud environments. Most notably, Nephele is the first
data processing frame-work to include the possibility of
dynamically allocating/deal locating different compute
resources from a cloud in its scheduling and during job
execution.

2. CHALLENGES AND OPPORTUNITIES
Current data processing frameworks like Google’s
MapReduce or Microsoft’s Dryad engine have been de-
signed for cluster environments. This is reflected in a
number of assumptions they make which are not necessarily
valid in cloud environments. In this section we discuss how
abandoning these assumptions raises new opportunities but
also challenges for efficient parallel data processing in
clouds.
Opportunities
Today’s processing frameworks typically assume the
resources they manage consist of a static set of
homogeneous compute nodes. New VMs can be allocated
at any time through a well defined interface and become
available in a matter of seconds. Machines which are no
longer used can be terminated instantly and the cloud
customer will be charged for them no more.
Challenges
The cloud’s virtualized nature helps to enable promising
new use cases for efficient parallel data processing. How
ever, it also imposes new challenges compared to classic

M.S.B. Pridviraju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5206 - 5209

5206

cluster setups. The major challenge we see is the cloud’s
opaqueness with prospect to exploiting data locality: In a
cluster the compute nodes are typically interconnected
through a physical high-performance network.

3. DESIGN
Based on the challenges and opportunities outlined in the
previous section we have designed Nephele, a New data
processing framework for cloud environments. Nephele
takes up many ideas of previous processing frameworks but
refines them to better match the dynamic and opaque nature
of a cloud.
3.1. ARCHITECTURE
Nephele’s architecture follows a classic master-worker
pattern as illustrated in Fig.

Figure 1 : Queryprocessing

The Job Manager receives the client’s jobs, is responsible
for scheduling them, and coordinates their execution. It is
capable of communicating with the interface the cloud
operator provides to control the instantiation of VMs. Cloud
Controller. By means of the Cloud Controller the Job
Manager can allocate or deal locate VMs according to the
current job execution phase. The actual execution of tasks
which a Nephele job consists of is carried out by a set of
instances. Each instance runs a so-called Task
Manager(TM). A Task Manager receives one or more tasks
from the Job Manager at a time, executes them, and after
that informs the Job Manager about their completion or
possible errors.
Unless a job is submitted to the Job Manager. We expect
the set of instances to be empty. When the respective
instances must be allocated/deal located to ensure a
continuous but cost-efficient processing. The newly
allocated instances boot up with a previ- ously compiled
VM image. The image is configured to automatically start a
Task Manager and register it with the Job Manager. Once
all the necessary Task Managers have successfully
contacted the Job Manager, it triggers the execution of the
scheduled job. Initially, the VM images used to boot up the
Task Managers are blank and do not contain any of the data
the Nephele job is supposed to operate on if they are
connected by a private or virtual network.
Job description
Similar to Microsoft’s Dryad jobs in Nephele are
Expressed as a directed acyclic graph (DAG). Each vertex
in the graph represents a task of the overall processing job,
the graph’s edges define the communication flow between

these tasks. We also decided to use DAGs to describe
processing jobs for two major reasons: The first reason is
that DAGs allow tasks to have multiple input and multiple
output edges. This tremendously simplifies the
implementation of classic data

I.RELATED WORK
A growing number of companies have to process huge
amounts of data in a cost-efficient manner. Classic
representatives for these companies are operators of Internet
search engines. The vast amount of data they have to deal
with every day has made traditional database solutions
prohibitively
Expensive .Instead, these companies have popularized an
architectural paradigm based on a large number of
commodity servers. Problems like processing crawled
documents or regenerating a web index are split into several
independent subtasks, distributed among the available
nodes, and computed in parallel.
II. PROPOSED SYSTEM
 In recent years a variety of systems to facilitate MTC has
been developed. Although these systems typically share
common goals (e.g. to hide issues of parallelism or fault
tolerance), they aim at different fields of application.
MapReduce is designed to run data analysis jobs on a
large amount of data, which is expected to be stored across
a large set of share-nothing commodity servers.
Once a user has fit his program into the required map and
reduce pattern, the execution framework takes care of
splitting the job into subtasks, distributing and executing
them. A single Map Reduce job always consists of a
distinct map and reduce program.
NETWORK MODULE:
Server - Client computing or networking is a distributed
application architecture that partitions tasks or workloads
between service providers (servers) and service requesters,
called clients. A client also shares any of its resources.
Initiate communication sessions with servers which await
incoming requests.
LBS SERVICES
Linking a position to an individual is possible by various
means, such as publicly available information city maps.

M.S.B. Pridviraju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5206 - 5209

5207

Even though a user may create a fake ID to access the
service, her location alone may disclose her actual identity.
When a user u wishes to pose a query, she sends her
location to a trusted server.
SYSTEM MODEL
Each vertex of the job system model graph is transformed
in to one execution vertex If constructing an execution
graph from a user submitted job graph may leave different
degrees of freedom to nephele
SCHEDULED TASK:
Recently, considerable research interest has focused on
preventing identity inference in location-based services.
This offers privacy protection in the sense that the actual
user position u cannot be distinguished from others in the
ASR (anonym zing spatial region) even when malicious LS
is advanced enough to possess all user locations. This
spatial K-anonymity model is most widely used in location
privacy research/applications, even though alternative
models are emerging.
QUERY PROCESSING:
Processing is based on implementation of the theorem uses
(network-based) search operations as off the shelf building
blocks. Thus, the NAP query evaluation methodology is
readily deployable on existing systems, and can be easily
adapted to different network storage schemes. NAP
achieves low computational and communication costs, and
quick responses overall. It is readily deployable, requiring
only basic network operations.
Job Scheduling and Execution
After having received a valid Job Graph from the user,
Nephele’s Job Manager transforms it into a so-called
Execution Graph. An Execution Graph is Nephele’s
primary data structure for scheduling and monitoring the
execution of a Nephele job. Unlike the abstract Job Graph,
the Execution Graph contains all the concrete information
required to schedule and execute the received job on the
cloud. It explicitly models task parallelization and the
mapping of tasks to instances. Depending on the level of
annotations the user has provided with his Job Graph,
Nephele may have different degrees of freedom in
constructing the Execution Graph.

While the abstract graph describes the job execution on a In
contrast to the Job Graph, an Execution Graph is no longer
a pure DAG. Instead, its structure resembles a graph with
two different levels of details, an abstract and a concrete
level task level (without parallelization) and the scheduling
of instance allocation/deal location, the concrete, more fine-
grained graph defines the mapping of subtasks to instances
and the communication channels between them.
Parallelization and Scheduling Strategies:
If constructing an Execution Graph from a user’s submitted
Job Graph may leave different degrees of freedom to
Nephele. The user provides any job annotation which
contains more specific instructions we currently pursue
simple default strategy: Each vertex of the Job Graph is
transformed into one Execution Vertex. The default channel
types are network channels. Each Execution Vertex is by
default assigned to its own Execution Instance unless the
user’s annotations or other scheduling restrictions (e.g. the
usage of in-memory channels) prohibit it.

IV RESULTS
The concept of this paper is implemented and different
results are shown below. The proposed paper is
implemented in .net technology on a System Pentium IV
2.4 GHz. Hard Disk40 GB. Floppy Drive1.44 Mb
Monitor 15 VGA Colour. Mouse Logitech. Ram 512 MB.
The propose paper’s concepts shows MapReduce has been
clearly designed for large static clusters. Although it can
deal with sporadic node failures, the available compute
resources are essentially considered to be a fixed set of
homogeneous machines.

V.CONCLUSION
In this paper we have discussed the challenges and
opportunities for efficient parallel data processing in cloud
environments and presented Nephele, the first data
processing framework to exploit the dynamic resource
provisioning offered by today’s IaaS clouds. We have
described Nephele’s basic architecture and presented a
performance comparison to the well-established data
processing framework Hadoop. The performance evaluation
gives a first impression on how the ability to assign specific
virtual machine types to specific tasks of a processing job,
as well as the possibility to automatically allocate/deal
locate virtual machines in the course of a job execution, can
help to improve the overall resource utilization and,
consequently, reduce the processing cost. With a
framework like Nephele at hand, there are a variety of open
research issues, which we plan to address for future work.
In particular, we are interested in improving Nephele’s
ability to adapt to resource overload or underutilization
during the job execution automatically. Our current
profiling approach builds a valuable basis for this, however,
at the moment the system still requires a reasonable amount
of user annotations. In general, we think our work
represents an important contribution to the growing field of
Cloud computing services and points out exciting new
opportunities in the field of parallel data processing.

M.S.B. Pridviraju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5206 - 5209

5208

REFERENCES
Daniel Warneke is a research assistant at the Berlin University of
Technology, Germany. Hereceived his Diploma and BS degrees in
computer science from the University of Paderborn, in 2008 and 2006,
respectively. Daniel’s research interests centre around massively parallel;
fault-tolerant data processing frame works on Infrastructure-as-a-Service
platforms. Currently, he is working in the DFG-funded research project
Stratosphere.

Odej Kao is full professor at the Berlin University of Technology and
director of the IT center tub IT. He received his PhD and his habilitation
from the Clausthal University of Technology. There- after, he moved to
the University of Paderborn as an associated professor for operating and
distributed systems. His research areas include Grid Computing, service
level agreements and operation of complex IT systems. Odej is a member
of many program committees and has published more than 190 papers.
Good Teachers are worth more than thousand books, we have them in Our
Department

 [1] Amazon Web Services LLC. Amazon Elastic Compute Cloud

(Amazon EC2). http://aws.amazon.com/ec2/, 2009.
[2] Amazon Web Services LLC. Amazon Elastic MapReduce.

http://aws.amazon.com/elasticmapreduce/, 2009.
[3] AmazonWeb Services LLC. Amazon Simple Storage Service.

http://aws.amazon.com/s3/, 2009.
[4] D. Battr´e, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke.

Nephele/PACTs: A Programming Model and Execution Framework
for Web-Scale Analytical Processing. In SoCC ’10: Proceedings of
the ACM Symposium on Cloud Computing 2010, pages 119– 130,
New York, NY, USA, 2010. ACM.

[5] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S.
Weaver, and J. Zhou. SCOPE: Easy and Efficient Parallel Processing
of Massive Data Sets. Proc. VLDB Endow., 1(2):1265– 1276, 2008.

[6] H. chih Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map- Reduce-
Merge: Simplified Relational Data Processing on Large Clusters. In
SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, pages 1029–1040, New York,
NY, USA, 2007. ACM.

[7] M. Coates, R. Castro, R. Nowak, M. Gadhiok, R. King, and Y. Tsang.
Maximum Likelihood Network Topology Identification from Edge-
Based Unicast Measurements. SIGMETRICS Perform. Eval. Rev.,
30(1):11–20, 2002.

[8] R. Davoli. VDE: Virtual Distributed Ethernet. Testbeds and Research
Infrastructures for the Development of Networks & Communities,
International Conference on, 0:213–220, 2005.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In OSDI’04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation, pages
10–10, Berkeley, CA, USA, 2004. USENIX Association.

[10] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G.
Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and
D. S. Katz. Pegasus: A Framework for Mapping Complex Scientific
Workflows onto Distributed Systems. Sci. Program., 13(3):219–237,
2005.

[11] T. Dornemann, E. Juhnke, and B. Freisleben. On-Demand Resource
Provisioning for BPEL Workflows Using Amazon’s Elastic Compute
Cloud. In CCGRID ’09: Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, pages
140–147, Washington, DC, USA, 2009. IEEE Computer Society.

M.S.B. Pridviraju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5206 - 5209

5209

